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Abstract

Three-dimensional numerical simulations are performed to investigate the dynamic tensile properties of ceramics,
using explicit dynamic FEM and cohesive element techniques. A micro-cracking model considering the stochastic
distribution of internal defects is developed. The model consists of a Weibull distribution of the local strengths, and a
facet area modification that accounts for the equivalent geometry of the elements. Preliminary calculations are per-
formed to verify the capability of this model in addressing mesh-dependency. The calculations show that the brittleness
of the material tends to deteriorate the mesh-dependency problem. However, by using the equivalent geometry mod-
ification with adequate parameters, the unwanted mesh-dependency can be satisfactorily corrected. Parametric studies
are performed to investigate the influences of the fracture energy and Weibull modulus. It is seen that for a fixed loading
speed, the strength of the specimen increases with the fracture energy, but decreases when the material becomes more
heterogeneous. The scatter of specimen strengths decreases when the material becomes more ductile. The observed
phenomena are explained by the micro-cracking mechanism of ceramics failure. The effect of loading speed is also
investigated, significant rate-hardening effect is observed. It is shown that the micro-cracking mechanism, which is
different in the dynamic loading case and static loading case, can explain the observed rate-dependency of the ceramic
tensile strength.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Ceramics are good material candidates for armor applications because of their hardness and lightweight.
When designing an armor system, it is important to understand the mechanical properties of ceramics
under strong, high rate impact loading. In order to develop the constitutive models to describe the
deformation and failure properties under impact loading, extensive research has been performed experi-
mentally using the Split Hopkinson Pressure Bar (SHPB) technique (e.g., Chen and Ravichandran, 1997,
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2000; Shih et al., 2000; Subhash and Ravichandran, 1998; Sarva and Nemat-Nasser, 2001; Jiao et al., 2004;
Wang and Ramesh, 2004) or plate impact technique (e.g., Grady, 1997; Bourne et al., 1998). It was found
that the failure strength and the failure mode of the ceramics are highly dependent on the lateral con-
finement; while the rate-sensitivity of the strength can be either high or moderate depending on materials
and strain-rate regions. The experimental work showed that the microscopic defects significantly influence
the strength and failure mode of the material.

Different theoretical models have been proposed based on the experimental observations. The micro-
crack-nucleation-growth model of Ravichandran and Subhash (1995), and the energy-diffusion model of
Bhattacharya et al. (1998), are two representative ones. Both models use mathematical analysis to describe
the failure process of ceramics. In the model of Ravichandran and Subhash, the propagation behavior of a
micro-crack (source of damage) within a confined cell is investigated; the failure of the bulk material is
defined as the instance when the damage density reaches a critical value. In the model of Bhattacharya
et al., the elastic energy within an intact specimen and a slit (failed) specimen are calculated by a macro-
scopic approach; the criterion for specimen failure is that the reduction of the elastic energy from intact
state to the split state must overcome the surface energy associated with the newly created surfaces. The
experimental observations about failure strength dependency on the confining pressure are successfully
explained by Bhattacharya et al.’s energy model.

Though a mechanics based analyzing model can provide elementary interpretations about the failure
mechanism, the dynamic failure process of ceramics is often too complex to be formulated theoretically.
Ceramics are usually brittle and have many intrinsic defects. The existence of these initial defects brings in
the stochastic strength properties of the bulk material. Under dynamic loading, these defects may nucleate
to form many micro-cracks, which result in the fragmentation of the material. Moreover, the high-speed
crack growth process is always accompanied with the inertia effect and rate-dependent fracture process. To
account for most of the mechanisms, numerical simulation is the exclusively promising method. In the
models proposed by different authors (Camacho and Ortiz, 1996; Espinosa et al., 1998; Miller et al., 1999;
Zhai and Zhou, 2000; Zavattieri and Espinosa, 2001; Zavattieri et al., 2001), the dynamic failure process is
simulated by the nucleation and the growth of micro-cracks within the ordinary element boundaries. The
propagation behaviors of these micro-cracks are simulated by cohesive elements. All these simulations are
two-dimensional. The core part of these simulations is the modeling of micro-cracks. This is performed by
using the cohesive elements. Cohesive elements are derived from the cohesive zone concept, which was
introduced by Dugdale (1960) and Barrenblatt (1962). The cohesive zone implementation into numerical
analysis is the cohesive element, which explicitly simulates crack propagation. The work of Xu and
Needleman (1994, 1996), Camacho and Ortiz (1996) demonstrated successful use of the cohesive element in
two-dimensional cases. The work of Ortiz and Pandolfi (1999), Pandolfi et al. (1999, 2000), and Ruiz et al.
(2000, 2001) successfully implemented cohesive elements into three-dimensional analysis in a range of
applications. In this paper, we will adopt a similar strategy, to perform three-dimensional numerical sim-
ulations by an explicit finite element analysis package incorporating a cohesive-element capability. Several
simulations of the dynamic fracture phenomena have been conducted to verify and validate this method-
ology (Zhou and Molinari, 2001).

A major difficulty that arises in a three-dimensional simulation is the size of the problem. Due to the
limitations in computational capabilities, a three-dimensional simulation cannot be too large. This often
leads to mesh-dependency problem. In our previous work (Zhou and Molinari, 2004), we have developed a
dynamic three-dimensional FEM technique to investigate the fracture/fragmentation behavior of brittle
structures. In the simulations, the brittle structures are considered as bodies containing initial defects. These
defects are modeled as the facets shared by two neighboring ordinary elements. Each facet has a specified
strength and fracture energy. When the loading stress on the facet exceeds its strength, the facet will be
activated as a micro-crack that is treated as a cohesive element. Because the cohesive elements are inserted
into ordinary elements dynamically (following the method of Pandolfi and Ortiz, 2002), the problem size is
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minimized. The strengths of the facets are scattered and observe a Weibull distribution. One immediate
benefits of using this model is that due to the effective-volume concept of the Weibull theory, the unde-
sirable mesh-dependency of the numerical calculation is significantly reduced.

The modeling technique was applied to analyze the failure processes of a ceramic (Silicon carbide, SiC)
cube under impact loading (Zhou and Molinari, 2003). An effective-shear-stress criterion of micro-crack
initiation and a frictional contact algorithm was incorporated into the cohesive element procedures. The
specimen under different loading rates was numerically tested to determine the compressive strengths of the
specimen. It was found that the strain-rate has moderate influence on the average strength of the specimen.
We have also investigated the influence of transversal confinement on the compressive strength. It was
shown that the confining pressure significantly increases the failure strength of the specimen. The simu-
lation results were in good agreement with experimental observations.

In this paper, we study the failure process of a SiC specimen under dynamic zensile loading. Due to the
testing difficulties such as gripping and specimen alignment, little experimental results have been found for
this problem (Walter et al., 1994). The numerical simulations intend to provide elementary intuitions on the
phenomenon. The material is assumed to contain Weibull distributed initial defects; therefore the failure
mode is stochastic. The failure of the specimen is simulated by the nucleation and the propagation of these
micro-cracks. The intrinsic damage scale (having the order of element size) is much smaller than the
specimen scale. A brittle system and a ductile system, with different fracture energy, are considered in the
analysis. We will show that for these two systems, the damage-scale stochastic properties influence
the specimen-scale strength properties differently.

We start this paper by describing the explicit FE implementation as well as cohesive element technique
(Section 2). Then, the microscopic stochastic fracture model including a Weibull strength distribution and
an equivalent area modification are detailed (Section 3). The application phase contains three sections. In
Section 4 we use four meshes, each having different element sizes, to calculate the tensile strength of a
ceramic specimen. The simulation results are dependent on the mesh type (mesh-dependency), especially for
the brittle system. We show that by introducing a Weibull-type strength modification and using appropriate
parameters, the mesh-dependency can be efficiently controlled. In Section 5, we fix the mesh and the loading
speed, to conduct parametric studies on material properties. It is shown that the strength of the specimen
varies with the initial distribution of defects, and the fracture energy. The physical reasons for these
phenomena are discussed. In Section 6, we extensively study the dynamic failure characteristics of a brittle
and a ductile specimen. A remarkable finding is that both the brittle system and the ductile system show
strong rate-sensitivity, which is different from the compression-failure phenomenon. An energy-dissipation
theory based on micro-cracking mechanism is proposed to explain the apparent rate-dependency obser-
vations. The conclusions and discussions are made in Section 7.

2. Finite element methodology and cohesive element
2.1. Equations of continuum mechanics

Following the methodology outlined by Molinari and Ortiz (2002), we consider the general case of a
body occupying an initial configuration By C R’ of the body at time #. We select B, as the reference
configuration. The motion of the body is described by a time-dependent deformation mapping ¢:
By X [ty, T] — R®. The initial deformation mapping, ¢(0) and the material velocity field, ¢(0), are supplied
to formulate the problem.

At an arbitrary time ¢, the local deformation of infinitesimal material neighborhoods is described by the
deformation gradient
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F=Vop, inB, (1)

where V, denotes the material gradient over B,.

For purposes of formulating boundary conditions, we partition the boundary 0B, of B, into a dis-
placement boundary 0By, and a traction boundary 0B(,. The displacement boundary conditions take the
form:

¢ = o(X,t), on 0By (2)

where ¢(X, ¢) is the prescribed deformation mapping on 0By;. The traction boundary conditions take the
form:

P-N= E(X, t), on 0By (3)

where P is the first Piola—Kirchhoff stress, NV is the unit outward normal to 8By, and t(X, ¢) is the prescribed
tractions applied on 0B,.
In addition, the solids contain a collection of cohesive cracks. We denote the location of these cracks by
So which has the unit of area. The cohesive surface leads to a new term in the principle of virtual work.
Under these conditions, the weak form of linear momentum balance takes the form:

[ b= n =P Vonati [ e allas+ [ nds =0 )
By So 0Bo2

where a superposed dot denotes the material time derivative,  is an admissible virtual displacement
satisfying homogeneous boundary conditions on 0By, t is the cohesive traction, p,b are the body forces,
and |||| denotes the jump across an oriented surface.

2.2. Cohesive law: general forms

The ceramics under loading are considered as a bulk material including cracks. Two sets of constitutive
equations are needed for the simulation: one describes the mechanical behavior of the bulk material; the
other describes the cohesive behavior of the crack. As the ceramics are brittle, we use homogeneous, iso-
tropic elasticity to describe the bulk material. For the crack behavior, we use the cohesive model developed
by Camacho and Ortiz (1996), Ortiz and Pandolfi (1999), Pandolfi et al. (1999, 2000). Following their
methodology, we postulate the existence of a free energy density per unit area of crack, ¢, which takes the
form:

¢ = ¢(5,0,q;n) (5)
where
o= loll (6)

is the opening displacement over the cohesive surface, 0 is the local temperature, ¢ is some appropriate
collection of internal variables, which describe the inelastic processes attendant to decohesion, and n is the
unit normal vector of the cohesive surface in the deformed configuration. The explicit dependence of ¢ on n
is required to allow for the differences in cohesive behavior for opening and sliding. The cohesive law, which
defines the function between the cohesive traction ¢ and the opening displacement 4, is given by:

_9
t==5 (7)

The potential structure of the cohesive law is a consequence of the first and second laws of thermody-
namics. We consider a simple class of mixed-mode cohesive laws accounting for tension-shear coupling
obtained by the introduction of an effective opening displacement, d., defined as:
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Seir = \/ B0 + &7 (8)

where

oph=20-n 9)
is the normal opening displacement, and

0s = |05 = |6 — Iy - n| (10)

is the magnitude of sliding displacement. The parameter f assigns different weights to the sliding and
normal opening displacements.

Assuming that the free energy potential ¢ depends on é only through the effective opening displacement,
5eff, ie.

¢ = ¢(derr, 0, q) (11)

the cohesive law reduces to

t = 2T (525, + S.n) (12)
5eff

where

a(,b((seff, 07 q)

- 13
fft 00efr (13)

is a scalar effective traction, which can be shown to be equal to:

tr = \/ B2t + 22 (14)

where t; and ¢, are the shear and normal tractions. It is seen that the parameter f§ defines the ratio between
shear and normal tractions.

2.3. Linear irreversible cohesive law

In our simulation we omit the effect of local temperature 6. For the form of the cohesive law e (Jerr), We
have found that the maximum traction and the fracture energy are important parameters. However, the
shape of fr(derr) function has little influence on the final results (Zhou and Molinari, 2001). Following
Camacho and Ortiz (1996), we use the simple irreversible, linear decaying function for the constitutive
behavior of the cohesive elements. This cohesive law is specifically adequate for the numerical scheme in
which cohesive elements are dynamically added to the structure. The law is shown in Fig. 1. Irreversibility
signifies that the damage in a given cohesive element cannot be recovered. The cohesive law is expressed as:

Lefr dﬁ

— =1 5 s for Seff > 0, (Seff - (3max
to'c s c 5 (15)
Oe__fcf = 5::){ — %:f, for 5eff < 5max

where o, is the maximum cohesive force and J. is the critical opening distance. The parameters (o, d.)
constitute the material data that characterizes fracture: ¢, can be viewed as the microscopic strength of the
materials, and J. the microscopic CTOD beyond which a surface is fully opened and retains no cohesion.
The area under the curve of Fig. 1 is the fracture energy that is needed to fully open a unit area of crack
surface:
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Fig. 1. Irreversible linear decaying cohesive law.

GC:2FC:%5° (16)

where G. is the fracture energy, I'. is the surface energy.

2.4. Explicit dynamic finite element analysis

Upon discretization, the principle of the virtual work applied to the equilibrium equation (4) renders:
M +R™(p) = R™ (1) (17)

where R™ and R™ are the external and internal forces arrays, M is the mass matrix, and ¢ is the nodal
coordinates array.

This equation is integrated along the time axis by the Newmark scheme. The second-order accurate
explicit scheme, an explicit version of the Newmark scheme, are shown as following (see Belytschko, 1983;
Hughes, 1987):

1
i1 = @, + ALV, + EAtza,, (18)
Aprl = Mil(Rfﬁl - Rﬂl) (19)
1
Vntl = Vp + _At(an + an+l) (20)

2

where v and a are the material velocity and acceleration fields. Note that for explicit equation solving, the
mass matrix M is lumped (diagonal). Therefore the reverse of it (M) is calculated immediately, and Eqs.
(18)—(20) are solved explicitly.

To guarantee the stability of the time integration, the time step At must be lower than a critical value,
Atyapie, Which is related to the dilatational (the fastest) wave speed and the (smallest) mesh size. In our
simulation, the time step is taken as:
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(1 =v)E
At = CAtstable = Cn’lell’l (1’1‘/\/ 1 — 2\)) /p) (21)

where C is a security coefficient (C < 1.0), A° is the dimension of the element, E, v and p are the Young’s

modulus, the Poisson ratio and the density of the material. The quantity

/ p is the wave speed of
plane strain stress wave.

l+\ I 2v

3. Microscopic cracking model
3.1. Ordinary elements and internal facets

We consider the failure process of a ceramic block under tensile loading. The block is divided by or-
dinary bulk elements. The interfaces between two neighboring elements, the facets, are treated as possible
cracks, which may be activated to form the cohesive elements (Fig. 2).

Fig. 3a shows a 12-node cohesive element linked to two neighboring 10-node bulk elements. Note that at
the beginning of the calculation, there is no cohesive element; namely, the material is crack free.
Throughout the calculation the cohesive elements are inserted into the mesh dynamically : a cohesive ele-
ment is created whenever, wherever the local effective traction acting on the facet reaches the cohesive
strength of the material, i.e.,

Olocal = \/ ,872‘52 + O—ﬁ > Ofacet (22)

where o, and 7 are the normal and the shear traction applied on the facet (Fig. 3b), o 1s the local strength
of the material.

When the criterion (22) is satisfied, a cohesive element is inserted between the two tetrahedral elements
adaptively. The topology of the mesh is modified accordingly. The new created cohesive element has the
cohesive parameters {Gpeer, Oracet }- After creation, the cohesive element behaves as a crack, which resists
opening until it is fully damaged (Omax = Ofacet)-

3.2. Distribution of facet strengths

For the brittle materials such as ceramics, the local cohesive parameters, o and Opee, are not nec-
essarily constants because of the presence of intrinsic and extrinsic defects. To account for the stochastic

Internal Facet

d Bulk

Boundary Element
Facet

Cohesive Element

Fig. 2. Finite element discretization of a ceramic block.
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Fig. 3. (a) Cohesive element connecting two tetrahedral elements; (b) forces applied on a facet.
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Fig. 4. (a) Local cohesive law; (b) Weibull distributions of microscopic strengths.

properties of ceramics, we assume that dgeq = . throughout the material, while og is randomly dis-
tributed. The local cohesive law is illustrated in Fig. 4a. Therefore, a location with smaller o, value
represents a weaker or damaged point of the material, while a location with larger o, value represents
stronger, defect-free material.

Similar to Weibull’s statistical strength theory (Weibull, 1939a,b, 1951), we propose a modified micro-
scopic facet-strength distribution. At this distribution, the probability of a facet to break under effective
tensile loading o is:

P(c) = 1 —exp [— (%)K;)] (23)

where Apce 18 the area of the facet, 4, is the scaling area; o the scaling stress, mg the Weibull modulus of
strength distribution, and m, the Weibull modulus for the effective area modification. From (23), the
distribution of the local facet strength oy, is expressed by:
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dp mg A facet % Ofacet ! A facet :%S‘ Ofacet "
acet) — =— | — — ex _— —_— 24
f(o-f l) do—facet (2 ( A ) ( O P A Os ( )

As aforementioned, we assume that all the cohesive elements have the same critical opening distance,
Jneet = Oc. For the convenience of statement, the value of d. is converted into the equivalent fracture energy,
G, by:

050,

G, =
2

Although the fracture energy may vary with location, the G, value provides a measure of the material’s
average ductility.

Fig. 4b shows typical Weibull distributions. The smaller Weibull modulus (m), the broader the distri-
bution becomes, and the material is more heterogeneous. On the other hand, larger m value represents a
homogeneous material in which the local strength is almost constant.

Note that, in Egs. (23) and (24), there exist two sets of Weibull parameters: the modulus and scaling
stress for strength distribution {mys, o5}, and the modulus and scaling area for effective facet area {m,, 4}.
The first parameters set represents the statistical distribution of the defects within the material. The second
parameters set represents the equivalent geometry effect originated from the characteristics of the facet
dimensions. The physical meaning of the equivalent area is that a larger facet has more chance to contain
defects, and therefore is more prone to fail. In other words, it has a lower strength and lower fracture
energy. Note that it differs from the classical Weibull theory; m, is not necessarily equal to ms. We will see in
the next section that the second parameters set helps to modify the unwanted mesh-dependency.

(25)

3.3. Physical problem

The specimen is a ceramic block, with dimensions L, = 1.5 mm, L, = 0.5 mm, and L. = 2.5 mm. The
specimen is loaded in z-direction by boundary velocities v(z). The function of v(¢) is:

_ Jooot/ty, t<ty
U(t) B { Vo, t>1 (26)

where ty = L,/c; is the time that the stress wave needs to propagate a specimen length, ¢; = \/E/p is the
uniaxial stress wave velocity. Although very small, the speed ramp (0 ~ #) prevents the stepwise increasing
boundary force, therefore smoothens the history curve of the boundary force. After ¢,, the prescribed
boundary velocity is kept at the constant value vy. The strain-rate of the specimen is constant for ¢ > 1, as:

(EI() = 2U()/LZ (27)

Along with the specimen’s deformation, the forces applied on the two end surfaces of the specimen
increase. Depending on the stress level and the local strength, an internal facet will be activated to form a
cohesive element when the criterion (22) is satisfied. At the time the specimen fails catastrophically, the
boundary force drops suddenly. The average value of the two peak boundary stresses is taken as the
strength of the material. Because of the randomness, the strength of the specimen may be different from
simulation to simulation, even for the same set of material parameters. To capture the statistical data of the
specimen strength, Monte-Carlo simulations are performed. For each simulation case (fixed mesh, material
parameters, and loading velocity), six numerical tests are performed. In each simulation the random seed is
changed. Therefore, in one simulation the local strength at certain location is different from that in another
simulation. Because the failure system is stochastic, this will result in different specimen strengths. The
average value and the standard deviation of the six calculated strengths are taken as the characteristic
strength values for this specific case.
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The material is assumed to be hot-press densified silicon carbide (SiC-N). The material has density
p = 3200 kg/m?, Young’s modulus £ = 460 GPa, Poisson ratio v = 0.16. From this data, we can calculate
the elastic wave speeds, as: uniaxial stress wave speed ¢ = 12,000 m/s, shear wave speed ¢s = 7870 m/s, and
Rayleigh surface wave speed cg = 7160 m/s. For the cohesive model, we take f = 5.0. For the statistical
fracture model, the scaling stress is o, = 415 MPa, the scaling area is 4, = 0.013 mm?. Unless stated
otherwise in the text, we assume the Weibull modulus of the local strength distribution, mg, to be 11.0. This
is a typical value for densified silicon carbides (http://www.cercominc.com/scb.htm). Other material
parameters, such as the fracture energy G., the loading speed, etc. will be changed in the following sections
to show their influence on the deformation/failure properties of the specimen.

4. Addressing mesh-dependency
4.1. FEM meshes

We have constructed four meshes for the ceramic block. In each model the sizes of the tetrahedral
elements are uniform. These meshes are shown in Fig. 5: from the coarsest to the finest, the element sizes
Reem, defined as the average length of the tetrahedral edges, are 0.25, 0.15, 0.10 and 0.075 mm, respectively.
The statistics of these meshes are collected in Table 1. The two fine meshes (R, = 0.10, 0.075 mm) contain
more than 14,000 internal facets, therefore are considered adequate for simulating the phenomenon of
multiple cracks formation.

In the following part of this section, we will use these four meshes to demonstrate the unwanted mesh-
dependency, and show an effective method of addressing it. The boundary velocity vy is fixed to 0.25 m/s,
which is equivalent to the strain-rate & = 200 1/s.

Fig. 5. FEM mesh of the ceramic block: Reer, = 0.25, 0.15, 0.10 and 0.075 mm.

Table 1
Statistics of four FEM meshes
Mesh type Average mesh Total Total Total Total internal Average facet
size (mm) nodes elements facets facets area (mm?)
Coarsest 0.25 1386 714 1229 497 0.038
Coarse 0.15 6085 3626 6656 4144 0.01268
Fine 0.1 17019 10719 20117 14325 0.00611

Finest 0.075 39464 25995 49634 38947 0.00336
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4.2. Addressing mesh-dependency for brittle systems

For this material, the average fracture energy, G, is assumed to be 1.0 N/m. From (25) we can calculate,
0. = 4.82 nm, which is very small, meaning that the material is very brittle. For this system, we calculate the
strength of the specimen using different meshes.

As a first simulation, we turn off the equivalent facet area term. This is done by assuming a very large
value of m, (= 10'?). According to (27), this means that the facet areas do not influence their strength. The
strength distributions within the specimen are shown in Fig. 6a. The four distributions have maximum
values at the identical stress level. The calculation specimen strength are shown in Fig. 6b. A significant
mesh-dependency phenomenon is observed: the finer the mesh is, the weaker the ceramic block appears.

This observed mesh-dependency could be explained by the “weakest link” theory for brittle materials.
As illustrated in Fig. 7, let us consider a one-dimensional case: a brittle bar is loaded by tensile force. Upon
simulation, the bar is divided by a coarse mesh and a fine mesh. Since the material is very brittle, the failure
of one element causes the complete failure of the bar. If the failure probabilities of a small element and a
large element are identical, then, the fine mesh will render a weaker bar strength. The reason is simple: it
contains more elements and has a larger chance of having weak ones among them.

To address this problem, it is necessary to introduce another length scale referred to as the equivalent
length. The equivalent length modifies the failure probability of the elements with different lengths, so that
the longer element has a larger probability to break.

For the three-dimensional failure problem, the “equivalent length” concept in the bar problem is ex-
tended to other equivalent geometric dimensions (equivalent length or volume). In our micro-cracking
model where the failure of the specimen is caused by the breaking of internal facets, an “equivalent facet
area” Apee 18 introduced, which is explicitly expressed in Egs. (23) and (24). As mentioned above, the
Weibull modulus for the effective area, m,, is not necessarily equal to the Weibull modulus of the strength
ms. Depending on the complexity of the problem (specimen geometry, material ductility, etc.), m, values
may be varied. This gives us additional freedom to simulate different problems.
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To address the unwanted mesh-dependency shown in Fig. 6b, we let the microscopic strength distri-
bution be modified by facet area. Taking m, = m; = 11.0, the distributions are shown in Fig. 8a. It is seen
that the distribution is different for different mesh size. The strength of a finer mesh (with smaller elements
and facets) is higher. The results of the calculation are shown in Fig. 8b. Now the new calculated strengths
converge to a constant value. The unwanted mesh-dependency is thus corrected.

4.3. Addressing mesh-dependency for ductile systems

Now consider a different material, whose fracture energy is taken to be G, = 50 N/m. From (25) we can
calculate, 6. = 24.1 nm, which is relatively larger. The material is ductile compared to the previous material
type.

We calculate the strength of the specimen using different meshes. First we turn off the equivalent facet
area term. The calculated specimen strengths are shown in Fig. 9a. Although we still observe the phe-
nomenon of mesh-dependency (the finer mesh renders lower strengths), this tendency is less significant than
the brittle system. If we continue to use the facet area modification with m, = 11.0 (m,/ms = 1), the cal-
culation specimen strengths exhibit a “reversed”” mesh-dependency: a fine mesh renders a higher strength.
This means that the unwanted mesh-dependency has been over-corrected.

Choosing a larger m, value gives a weaker modification. For the present system, we found that the choice
m,/ms = 4 renders good results. The calculated specimen strengths with the new m, value are shown in
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Fig. 9. Strengths of the ductile material: (a) without area modification,
effectively corrected with a weak area modification (m,/ms = 4).

minor mesh-dependency is seen; (b) mesh-dependency is
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Fig. 9b. Clearly different meshes produce constant specimen strengths. This means that the mesh-depen-
dency is mostly eliminated.

4.4. A discussion about mesh-dependency and its correction

We have considered two kinds of systems: a brittle system, and a ductile system. The difference appears
in the material’s fracture energy, G, (for the brittle system, G. = 1 N/m; for the ductile system, G. = 50 N/
m). For the brittle system, we showed that a significant mesh-dependency exists: the calculated specimen
strength decreases when the mesh becomes finer (Fig. 6b). To solve this problem, we have introduced a
mesh-dependent cohesive model. The modification Weibull modulus, m, = 11.0, gives good correction
results (Fig. 8b). On the other hand, for the ductile system, while the mesh-dependency effect still exists, it is
not so significant (Fig. 9a). Accordingly, a weak modification, where the modification Weibull modulus,
m, = 44.0, is applied. This gives quite satisfactory results (Fig. 9b).

The reason for the differences can be explained using a mesh-size scale/cohesive-zone scale argument.
The length scale of the cohesive zone ahead of a crack tip, R.ohesive, Can be estimated by the following
formula (firstly given by Rice in (1980) and restated by Falk et al. (2001)):

o E G,
Rcoheswe - 32 1 — Vz 0_(2) (28)
Since £ = 460 GPa, v = 0.16, gy ~ 415 MPa, the scales of the cohesive zones are 0.0024 and 0.12 mm, for
brittle and ductile materials, respectively.

In our four meshes, the length of the elements varies between 0.075 and 0.25 mm, which has the same
order as the cohesive-zone scale of the ductile material (0.12 mm). When the mesh becomes finer, the
physical features of fracture are better captured by these meshes. So the mesh-dependency is insignificant
and a slight modification can correct it. We can assess that for a very ductile system (e.g. G. > 200 N/m,
Reonesive > 0.48 mm), area modification is unnecessary and we can choose m, to be infinite.

On the other hand, the cohesive-zone scale of the brittle material is 0.0024 mm, which is one to two
orders less than our smallest element sizes. In this sense, the material is too brittle for our four meshes to
resolve, and the fracture of the block basically observes “the weakest link’ hypothesis. As illustrated in
Fig. 7, a significant mesh-dependency is observed for this very brittle system. A modification based on
Weibull theory should be used to correct this phenomenon. In essence, our calculations illustrate that,
introducing an additional length scale into our Weibull distributed cohesive elements improves numerical
results. Our model can be used in simulations in which a fine mesh may not be affordable at all locations.

Based on the above discussions, we conclude that the Weibull model takes its full meaning for low value
G, (brittle) materials.

5. Influence of material parameters

In this section, we will only use the second finest mesh (Rge, = 0.10 mm). The strain-rate is fixed to 200
s~1. We also assume that m,/ms = 1 in all simulations. Unless otherwise stated, the Weibull modulus is
ms = 11.0; the fracture energy is G. = 1 N/m We will exclusively vary m or G, around the default values to
investigate their effects on the specimen’s failure properties.

5.1. Influence of Weibull modulus: m;

All other parameters fixed, we change the Weibull modulus of microscopic strength distribution, as
mg = 2.5, 5.5, 11.0, 20.0. The microscopic strength distributions are shown in Fig. 10, where a smaller m;
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value produces a broader strength distribution, and physically represents a more heterogeneous material.
Fig. 11a shows typical history curves of the loading stress. It is seen that for a small m, value material, the
loading curve appears rough before peak stress is reached. The reason is: this material has a broader
strength distribution; therefore before the catastrophic specimen failure, the formation of the micro-cracks
is relatively faster than that of a more homogeneous material.

The average specimen strengths are plotted against m value in Fig. 11b. It is seen that the specimen’s
failure strength increases with the Weibull modulus of the microscopic strengths. The reason is: at lower
Weibull modulus, the material is more heterogeneous and there are more internal defects that can be
activated at low stress levels; these micro-cracks make the specimen weaker. This dependency is the same to
that observed in the compressive behavior (Zhou and Molinari, 2003).

5.2. Influence of fracture energy: G,

In this section, the Weibull modulus of microscopic strength distribution is held constant at m; = 11.0.
The fracture energy G, takes the values G, = 1.0, 5.0, 10.0, 25.0, 50.0, 100.0, and 200.0 N/m. Note that even
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though G, varies, we do not alternate m, value, which is fixed to 11.0. The strength distribution, therefore, is
fixed and shown in Fig. 8a or Fig. 10 (triangles). This helps us in comparing the specimen strength that is
exclusively influenced by the G, value.

According to (28), the length of the cohesive zone is Reopesive = 0.0024, 0.012, 0.024, 0.06, 0.12, 0.24, and
0.48 mm, respectively. As the average mesh size is fixed to Reer, = 0.10 mm, the materials with G, <25 N/m
appear to be brittle, while the materials with G, > 50 N/m appear to be ductile in the simulations.

Fig. 12a shows typical histories of the loading stress. As expected, the failure properties of the larger G,
materials are more ductile; namely, the loading curves have longer non-linear regions prior to ultimate
failure. This phenomenon is especially manifested by the material with G. = 200.0 N/m, which does not
show catastrophic stress drop. The calculated strengths are shown in Fig. 12b. It is seen that the failure
strength of the specimen increases with fracture energy. The reason is that with a higher fracture energy, the
activated micro-cracks within the specimen are more difficult to expand to cause a catastrophic specimen
failure, therefore the specimen appears stronger. This tendency is also observed in the compressive strength
of the materials (Zhou and Molinari, 2003).

Although it may not be significant, we have noticed that for the materials with higher fracture energy,
the scatter of their failure strengths is smaller. The reason of this phenomenon will be discussed in details in
the next section.

6. Failure of ceramics under dynamical loading

In this section, we use the mesh R, = 0.10 mm to investigate the dynamic failure characteristics of the
ceramics. Two systems, a brittle one (G. =1 N/m, m, = my; = 11.0) and a ductile one (G, = 50 N/m,
m, = 44.0, my = 11.0), are considered. The microscopic strength distributions for these two materials are
shown in Fig. 13a. In Fig. 13a each distribution curve consists of three curves that come from three sim-
ulations. Note that the brittle system is a little stronger than the ductile system, as a result of mesh-
dependency correction.

In the simulations of this section, all the material parameters are fixed at the default values, while the
loading velocity vy, and therefore the strain-rate &y, vary. The prescribed boundary velocity curves are
shown in Fig. 13b, the target v, are 0.05, 0.25, 1.25, 2.5, 6.25, 12.5, 25.0, and 50.0 m/s, respectively. This
renders the target strain-rates to be 40, 200, 1000, 2000, 5000, 10,000, 20,000, and 40,000 s~!, respectively.
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6.1. Dynamic strengths

Under different loading rates, the typical loading stress curves are shown in Fig. 14. Although the curves
shown are for a brittle system, the curves for the ductile system are similar. The curves generally reveal the
brittle properties of the failure process: each stress increases linearly with time, and drops suddenly upon
failure. For the very quick loading rate cases (vy > 12.5 m/s, or & > 10000 s~!), the specimen breaks before
the target velocity vy is reached. Therefore, the target strain-rates &, are not reached. In these cases, we take
the maximum loading speed v« (boundary velocity at the breaking time) to calculate the real strain-rates.

The calculated specimen strengths (the average value and the standard deviations) are plotted against the
logarithm of the real strain-rates in Fig. 15. It is seen that for both materials, the failure strength of the
specimen increases with the strain-rates. This differs from our previous simulating results on compressive
strengths (Zhou and Molinari, 2003). Since the crack initiation criterion and the cohesive model are not
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Fig. 14. Loading histories of brittle system (G. = 1 N/m) under different strain-rates.
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rate-dependent, the observed strain-rate-dependency of specimen strength comes from inertial effect and/or
from the micro-cracking mechanism. Detailed discussions about the rate-dependency will be made in the
next part of this section.

Besides the rate-dependency, we observe the following phenomena:

(1) As mentioned in 5.2, the ductile system (G. = 50 N/m) has higher failure strength than the brittle system

2)

A3)

(G. = 1 N/m). This is true even though the brittle material has a stronger microscopic strength distri-
bution (see Fig. 13a). This is explained as follows: the fracture energy of a ductile system is higher than
that of a brittle system. Therefore, the activated micro-cracks within the ductile specimen are more dif-
ficult to expand to cause a catastrophic specimen failure, hence a higher apparent strength level for the
ductile specimen.

For a ductile system, the scatter of the failure strengths is much less than that for a brittle system. This
phenomenon can be explained by the ductility of the material. When the material has low fracture en-
ergy, the specimen is so brittle that one or a few weak points (the micro-cracks activated at defect loca-
tions) may cause catastrophic specimen failure, therefore the material strengths are governed by the
stochastic distributions of these weak points. The weakest link hypothesis is more applicable to such
brittle system. On the other hand, the failures of ductile materials are more controlled by the collective
behavior of many cracks, which are less stochastic due to the averaging effect. As a result, the failure
strengths of this ductile system are less scattered.

Even for the brittle system where strength scatters are large, the level of scatter tends to decrease with
the strain-rate. In other word, the material appears less stochastic at higher strain-rate. The reason for
this is: at a higher deformation rate, more micro-cracks are activated at the specimen failure (see the
next section). This large number of the activated micro-cracks results in more averaging effect, thus
decreases the material’s stochasticity.

6.2. On the rate-dependency of the tensile strengths

In this part, we discuss in details the observed rate-dependency of the specimen strength. As shown in

Fig. 15, both materials exhibit remarkable rate-hardening effects. The rate-dependency is more significant at
higher strain-rates (de/d¢ > 5000 s!) than at lower strain-rates (de/dt = 40-5000 s~!). In lower strain-rate
region, the rate-hardening effect for a ductile material is less than that for a brittle material.
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Since in our model the crack initiation criterion and the cohesive model are not rate-dependent, the
apparent strain-rate-hardening effect comes exclusively from inertial effects. There exist two forms of
inertial influences: structural inertia and inertia related micro-cracking. The two effects are discussed in
details below.

(1) Structural inertia: at very high strain-rates: & > 5000 s~! (here &, is the real strain-rate), the apparent
rate-hardening tendency is mainly attributed to the effect of stress wave propagation within the speci-
men. In these cases, the target strain-rates are 10,000, 20,000 and 40,000 s~'. However, the specimen
breaks before the target strain-rate is reached. To mend this problem we calculate the real strain-rate
with the boundary speed at failure point, which gives values of 8860, 9550 and 11,000 s~!, respectively.
Further, as the fracture happens before the stress wave propagates to the other side of the specimen, the
stress distribution within the specimen is not uniform at failure point. Therefore, the failure strength,
taken as the boundary stress, is only of relative meaning. The sudden increase of the rate-dependency is
only reflected in these non-uniform loading cases.

(2) Micro-cracking effect: The specimen failure is caused by micro-cracks initiation and propagation.
Because the extension of the micro-cracks takes time, other micro-cracks may be activated before a
neighboring activated micro-crack extends and unloads them. As a result, the block breaks with more

Fig. 16. Typical failure pattern of brittle specimen: (a) & = 200 s~'; (b) & = 1000 s~!.

Fig. 17. Typical failure pattern of ductile specimen: (a) & = 200 s~'; (b) & = 1000 s~'.
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cracks at higher loading rates; while at lower loading rates, a single main crack may cause catastrophic
block failure. This phenomenon is manifested in Fig. 16 for the brittle system (G, = 1 N/m), where the
specimen fails with one or two main cracks under 200 s~! strain-rates (Fig. 16a), but fails with three or
more main cracks under 1000 s~! strain-rates (Fig. 16b). This failure pattern difference devotes to the
observed strain-rate effects, especially in the relatively low strain-rate region (&, > 40-5000 s~1).

The same tendency exists in the ductile material (G. = 50 N/m), but seems less significant. The typical
failure patterns of ductile specimens are shown in Fig. 17. Because the material is very ductile, at a low
strain-rate a few occasionally activated micro-cracks are not enough to cause catastrophic block failure.
Therefore the aforementioned failure pattern difference is less significant than that in the brittle case. This
explains the observation that in the region & = 40-5000 s~' the rate-hardening effect is weaker with
increasing ductility.
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Table 2
Failure parameters for brittle specimen

Brittle G. = 1 N/m

é =200 s7! é = 1000 s~
Failure stress (MPa) 345 368
Activated cohesive element 350 650
Cohesive energy dissipation (pJ) 6.2 18
Percent of energy dissipation 2.5% 6%

Table 3
Failure Parameters for Ductile Specimen

Ductile G, = 50 N/m

& =200 s7! é = 1000 s~
Failure stress (MPa) 355 380
Activated cohesive element 240 460
Cohesive energy dissipation (pJ) 22 56
Percent of energy dissipation 8.6% 17%

Additionally, we have quantitatively investigated the micro-cracking process of tensile failure. We plot
the history curves of the loading-stress, the activated cohesive-elements number, the dissipated cohesive
energy, and the total external work provided into the system. Fig. 18 shows these curves for a brittle system
(G. =1 N/m). The failure time is defined as the time when the external loading drops suddenly. After
failure, the stress within the specimen is released by the newly formed crack surface. Because the fracture
process is very fast, the stress release is accompanied by stress wave reflections within the broken pieces,
causing external loading oscillations and temporary compressive stress. The micro-cracking parameters at
the failure point are measured directly from the other history curves. These data are collected in Table 2.
These data show that, at failure, more cohesive elements are activated in the higher strain-rate case than in
the lower strain-rate case. As a result, more cohesive energy is dissipated at failure when the strain-rate is
higher. Such difference is in agreement with the failure patterns shown in Fig. 16. The more dissipated
cohesive energy at higher strain-rate case results in phenomenological rate-dependency of the failure
strength.

A similar calculation is performed for the ductile material (G. = 50 N/m). The history curves are omitted
due to the length limitation of this paper. Typical failure parameters of the ductile material are collected in
Table 3. Similar to the brittle case, at the failure point of a ductile material, more cohesive elements are
nucleated, and more cohesive energy dissipated when the loading rate is higher. This phenomenon quali-
tatively agrees with the failure pattern observations (Fig. 17). The increased cohesive energy dissipation
devotes to the phenomenological strength rate-dependency.

Summarizing the above results, we conclude that for a high loading rate case, more micro-cracks are
initiated at the failure point, and more energy is dissipated. This tendency exists for both brittle and ductile
material. This mechanism results in the rate-dependency of the specimen strength. Due to the averaging
effect, it also causes the specimen strength to be less scattered at high strain-rate.

7. Conclusions and discussion

In this paper, we have numerically simulated the dynamic fracture process of a ceramic block under
tensile loading. The simulation was performed using an explicit dynamic finite element method. The
ceramic material was considered as two parts: the bulk material regions discretized by tetrahedral elements,
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and the internal micro-cracks that appear at the interfaces (facets) between ordinary elements (Fig. 2b). The
constitutive law for the bulk material was linear, homogeneous, isotropic elasticity; while the mechanical
behaviors of the micro-cracks were described by cohesive elements.

A stochastic micro-cracking model considering the random distribution of internal defects in the
material was proposed. Upon loading, micro-cracks nucleated randomly in the block, which grew and
coalesced with each other causing the catastrophic failure of the specimen. The micro-cracking model
consists of a Weibull distribution of the local strengths (strength Weibull), and a facet area modification
(geometry Weibull) that accounts for the equivalent geometry of the damaged material (Egs. (23) and (24)).

We have considered a brittle system and a ductile system to investigate the mesh-dependency of the
model. The fracture properties of the material were simulated by using four different meshes (Fig. 5). For
the brittle system, we found that if the geometry Weibull was not included in the model, then due to the
“weakest link phenomenon”, the specimen appeared weaker at finer meshes. Namely, the calculation re-
sults are mesh-dependent (Fig. 6b). By using a Weibull type equivalent area modification with geometry
Weibull modulus m, = ms, the unwanted mesh-dependency was effectively eliminated (Fig. 8b). For the
ductile system without geometry modification, the mesh-dependency still existed but was less significant
(Fig. 9a). Accordingly, a weak modification with m, = 4m rendered satisfactory results (Fig. 9b). Therefore
a modified Weibull model is important for brittle materials.

Parametric studies were performed to investigate the influence of material properties on the structural
strength. We showed that the failure strength of the specimen increases with the fracture energy (G.), Fig.
12b. The reason is that at higher G., the material is very ductile and the activated micro-cracks are more
difficult to expand. Additionally, we demonstrated that the failure strength of the specimen increases with
the Weibull modulus of the microscopic strengths (m;), Fig. 11b. The reason is: if m is lower, the material is
more heterogeneous and contains more internal defects. The defects are activated as micro-cracks at lower
stress level. As a result, the specimen becomes weaker.

Finally we have studied the failure properties of two material systems that are loaded at different loading
rates. Both materials showed significant rate-hardening: the apparent specimen strength increases with the
strain-rate (Fig. 15). Also we found that the scatter of the failure strengths is less than that for a brittle
system (Fig. 15). Again these phenomena were explained by the micro-cracking mechanism of the materials.
We showed that the failure of a brittle system is more controlled by its internal microscopic-scale weaker
points under “‘the weakest link” hypothesis. Therefore at the macroscopic scale, the strength of the brittle
specimen appears stochastic. On the other hand, the failure of a ductile system is controlled by the initiation
and the (sticky) growth of many micro-cracks; the collective behavior of these micro-cracks smoothens
down the randomness at the macroscopic scale.

The observed failure strength rate-dependency was explained by material’s inertia. This inertial effect
influences the fracture process of the specimen, either directly as stress wave propagation, or indirectly
through the micro-cracking mechanism. We found that the micro-cracking mechanism is different for
static loading and dynamic loading. When the specimen breaks under higher loading rate, more micro-
cracks are nucleated because the adjacent already-nucleated cracks do not have enough time to unload
each other. This is manifested by the numbers of the activated cohesive elements under different loading
speed (Tables 2 and 3). The failure patterns have also illustrated this difference (Figs. 16 and 17). As a
result, when a specimen is loaded at a higher speed, more cohesive energy is dissipated before its cat-
astrophic failure. This energy increase is, at least partially, responsible for the apparent increase of the
specimen strength.

This dynamic micro-cracking mechanism has been observed experimentally in the failure process of
ceramics under impact compressive loading. Subhash and Ravichandran (2000) have pointed out that
when the loading rate increases the time available for a crack to initiate and grow reduces. As a result,
the inertia associated with crack-growth acceleration will inhibit early fracture while the applied stress
continues to rise rapidly, elevating the compressive failure strength under dynamic loads. Wang and
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Ramesh’s work (2004) shows that the fragment sizes of SiC—N decreases with the compression strain-
rate. Due to experimental difficulties, little direct measurements are available on the failure strength of
ceramics under dynamic tensile loading. However, there are indirect experimental observations that show
material break into many pieces under a rapid-applied tensile loading (Grady and Benson, 1983). The
one-dimensional model based on stress wave propagation/interaction analysis has shown that under
dynamic loading, the increasing of fragment number (and the decreasing of fragment size) are attributed
to the material’s inertia effect (Drugan, 2001). Numerical simulations also proved this (Pandolfi et al.,
1999), though no failure strength data have been given. In our analysis, we have directly calculated the
tensile strength of the material, and exhibit the rate-dependency explicitly. Our results are supported by
the analysis of Denoual and Hild, which was carried out using a statistical fracture model (Denoual and
Hild, 2000). Note that the Denoual and Hild’s model also exhibits the tendency that the material’s
stochasticity decreases with loading rate (see detailed discussion in Hild et al., 2000), which is also shown
in our observations.

The cohesive laws incorporated in the present analysis were rate-independent, with only two basic
parameters: the microscopic strength o. and the fracture energy G.. Nevertheless, in the case of dynamic
loading, an intrinsic time scale exits in this model. As pointed out by Camacho and Ortiz (1996), the time
scale, . = d./c, is linked to the critical cohesive opening displacement (d. = 2G./a.) and the elastic stress
wave velocity (c). It is shown that this simple, rate-independent cohesive model can describe many dynamic
fracture/fragmentation phenomena. In our previous work, we have shown that a rate-independent cohesive
law, in conjunction with a rate-dependent bulk material constitutive law, is able to simulate the rate-
dependent dynamic fracture of ductile metallic materials (Zhou et al., 2004). The present work shows that,
the rate-independent cohesive law, when combined with the dynamic micro-cracking (nucleation and
growth) mechanism, which is closely related to material inertia, brings out a strong rate-dependency of the
dynamic tensile strength.

It is noteworthy that the observed rate-dependency for the tensile failure is different from the case of
compressive failure. When the specimen is compressed up to breaking, the failure strength shows quite
small dependency (Zhou and Molinari, 2003). An explanation of this difference is that the compressive
failure strength of SiC-N is typically 6 GPa, about 15 times the value of the tensile failure strength. At
failure point, the strain energy density stored within a compressive specimen is more than 200 times larger
than that stored in a tensile specimen. As a result, upon compressive failure, the share of the cohesive
energy dissipation is negligibly small. Therefore, although there is a difference between the dynamic micro-
cracking mechanism and the static one, the energy attributions are so small that the phenomenological rate-
dependency is moderate for the compressive case.
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